

INTRODUCTION & OPPORTUNITIES

Game theory based games are made possible on the Ethereum network because of anonymity that

is provided on the blockchain and trustless smart contracts that ensures all rules are faithfully

executed regardless of individual participant’s actions.

As a result of anonymity provided by the blockchain, social repercussions are taken out from each

participant’s actions and reputational concerns of individuals are reduced. Essentially, the cost

considered for performing actions within the game is trimmed down to pure economic terms.

Ethereum provides an ideal medium for permitting true game theory based scenarios to be played

out in real life.

EtherSphere attempts to pioneer and experiment with smart contract games to generate a whole

new genre of players and systems.

BACKGROUND

EtherSphere 2.0 is a web-based decentralized application featuring a reward pool system. Each

round has a time limit of 12 hours consisting of a reward pool and a jackpot. Players participate by

registering their wallet and have access to a collaboration box for social interaction with other

players.

To play, players will place bids in ether with the intent to earn positive gains from the reward pool

or win a large jackpot. Bids placed by players form a bid pool by the end of each round.

INTRODUCTION & OPPORTUNITIES

GAME MARKET

Direct competition in the space is limited and we are ambitious in bringing game-theory based

games into the market. Right now, the main source of competition comes from alternative services

like gambling.

The global games market is estimated to generate an approximate of $108.9 billion in games

revenue with an expected CAGR of 6.2% projected towards 2020 to reach $128.5 billon.

PROOF OF CONCEPT

EtherSphere 1.0 was used as a pilot test to gauge the receptivity, sustainability and viability of the

entire project. In total, it has received $150,000 worth of bids and 1600 transactions over a period

of 27 days. Information can be verified on the blockchain using EtherSphere’s contract address:

0x9a2e9235f7a7ac7b899e5f3208fbb13c6985171a

Total traffic accumulated over the course of the pilot test was more than 40000 unique visitors from

forums, Reddit, social media referrals, search engine results and direct word of mouth. Given the

short amount of time and limited advertising budget, the results and attention it received were

surprisingly positive.

GAME MECHANICS & DESIGN

NASH EQUILIBRIUM AND PRISONER’S DILEMMA

Prisoner’s dilemma is a subset of game theory that shows why completely rational individuals might

not co-operate even though it appears to be in their best interest to do so. Three key elements are

necessary in a game to ensure conditions of prisoner’s dilemma are fulfilled. There must be a

dominant strategy for every player that involves some form of defection, co-operation is the optimal

solution and everyone else will be worse off for defecting. The result of these conditions creates a

Nash equilibrium where participants tend to defect over the long run, and in turn enables a self-

sustainable reward pool that increases over time.

Given that each participant who does not compete for jackpot in a jackpot round loses, and winning

the jackpot is a strategy that guarantees positive returns, jackpot plays are dominant strategies on

an individual basis in all rounds. While jackpot plays benefit the defector, everyone else is worse off

as a result. Hence, it would be less ideal than a scenario where no jackpot plays occur and everyone

wins. This dynamic fulfils the basic conditions of prisoner’s dilemma where co-operation is superior

to defection, but individual participants are strongly incentivised to defect, causing everyone to

more likely defect than not.

CO-OPERATIVE VS NON-COOPERATIVE SCENARIOS

Under the iterated prisoner’s dilemma using stochastic estimations of defection, probabilities can

tend towards a positive trend based on historical co-operative scenarios and may create a

conflicting equilibrium from one we are attempting to achieve. A stationary vector

where M is a stochastic matrix that defines the set of probabilities for actions of each player may

be generalized from a memory-n equilibrium matrix and a trend can be deterministically

controlled by carefully considering the effects of game mechanics and examining actions in all

possible game scenarios.

Co-operative scenarios of game theory may evolve but cannot exist in a permanent state because

of the constraints created by the game rules. Since bid, reward and jackpot pool all varies across

rounds, M cannot be purely computed statically from . Given that there are number of

players in each round, and minimum bid is a static value, there exists a theoretical threshold

for reward pool below which co-operative scenarios of game theory cannot naturally occur:

GAME MECHANICS & DESIGN

In a scenario where reward pool falls below the threshold, it is not possible for all participants to

gain through co-operation and making minimum bids. Total bids of all participants would be at least

the size of the reward pool, hence gains will be zero. It will require players to give up their share,

and this share will be split among all the other players who participated in bidding. This is unlikely

to occur, since it requires players to knowingly sacrifice their earnings just for others to gain. As a

result, jackpot is almost guaranteed to happen close to the threshold.

BID LIMITS AND DILUTION CAP

Actions of a player are often affected by emotions and may not align with the predictions

rationalized in game theory. A player’s loss aversion tendencies can influence otherwise rational

economic decisions and result in a skewed gameplay where cautious rather than optimal decisions

are made.

Bid limits and dilution cap is set to create a safety net for players to ensure losses are minimized.

This creates a more sustainable and healthy game that reduces the impact of disproportionate

player wealth and protects the psychological health of players over the long run.

GAS EFFICIENCY

Contract operations can be expensive on the network and gas prices have been proven to be

highly variable on Ethereum. On top of cost considerations, in order to ensure that the game is

scalable, it is necessary to ensure gas costs are independent of the number of players. Regardless

of the number of players, gas costs should be roughly constant. Otherwise, a scenario where the

game cannot process further transactions due to gas limits can occur, causing funds to be locked

and irretrievable.

DELAYED GAS CONSUMING OPERATIONS

Majority of the gas intensive operations are memory operations such as sload and sstore, and

transaction operations which involve sending ethers or recording token transfers. These

operations are heavily used in the following:

 Recording player bids

 Recording fragment entitlements

 Distributing rewards

 Distributing fragments

 Recording investor fees

Player bids and fragment entitlements are recorded in the fallback call of the game contract. All

transfer transactions occur in function calls separated from the fallback, and the fallback

operations involve solely single array data insertion or modification. This ensures the fallback is

executed with roughly constant cost of 75000 gas using a single mapping to indicate bid amount

and to compute a flag to determine if the player is recorded in the distribution table.

Storing bidders in arrays are necessary since mappings cannot be iterated in Ethereum. Simplifying

array resets is done by keeping and changing the tail index of the array, essentially doing dynamic

memory management on the contract.

GAS EFFICIENCY

Cost of reward distribution is as follows:

Where n the is the number of players and k is the base costs of the function call. In order to

accommodate edge cases where N becomes large, reward distribution can be broken down into x

partial calls. Essentially, a flag is used to indicate a long operation which blocks other functions

from executing until reward distribution is completed through multiple calls.

Under Metropolis, EOA isn’t necessary and gas funds will be pulled from the reserve by a contract

and triggered by a house algorithm. Alternatively, an incentive structure can be incorporated such

that players are rewarded for triggering reset calls, ensuring the system can be run fully

autonomous without house intervention.

FEASIBLE FEE DISTRIBUTION MODEL

Conventionally, distributing dividends or revenues through tokens involve batch operations

triggered manually by a third-party system or through scheduling algorithms. Each token holder’s

held number of tokens is recorded at a specified time and the recorded value is subsequently used

to determine how much fee or revenue each person is entitled to.

There are several issues with this that prevents companies from adopting a proper workable fee

distribution model for their token holders.

First, this requires reliance on a third party to trigger recording. In this way, the system is not self-

reliant and if for some reason the third party is unable to continue providing trigger calls, all token

holders will no longer be able to obtain their promised cash flow. Second, it is susceptible to denial

of service attacks on Ethereum. Should someone distribute 0.0001 token each to a large number

of unique wallet addresses, then the number of recorded participants will increase. Since

Ethereum requires gas for computation, and recording requires expensive sstore operations, doing

this in an attack scenario will essentially cause the recording operation to exceed any reasonable

amount of gas limit and permanently destroy the distribution system.

GAS EFFICIENCY

EtherSphere proposes an alternative model to ensure a self-sustaining fee distribution structure

resistant to any denial of service attacks.

ROUND-LEVEL SUPPLY HISTORY

Fee distribution computation needs to take into consideration variations in token supply across

rounds. Supply is dynamic for the following reasons:

 Burning of tokens to claim reserve value

 Tokens are minted through fragment exchange

 New token issues in subsequent fundraising

Upon fee deposit by an authorized game, the DAO will be responsible for recording the

corresponding round supply and total fee claimable. Each token holder’s set of claimed rounds will

be recorded in a map, and the map is used to determine fee entitlement for each round. Once

claim function is invoked by a token holder, fee computation will begin using the supplied gas to

determine the set of eligible rounds and corresponding payout per token for the holder.

DEFERRED ADDRESS ENTITLEMENT COMPUTATION

Entitlement computation is necessary for determining how much fee a token holder is eligible for

without over allocating shares that belong to someone else. In order to do such computations

without subjecting it to denial of service attacks, it has to be done in a deferred manner - meaning

it should only be computed for an individual when the entitlement information is needed or used.

GAS EFFICIENCY

In order to achieve this, we record all intermediate information necessary to perform computation

but without executing the actual computation itself. Recorded information include total supply,

fees and token transfer information. Such information can be trivially recorded during fee deposits

and actual transfer operations. The additional gas incurred is distributed across all transactions

and each user pays for it through a standard token transfer operation. Subsequently, claimable

balance can be computed as follows:

BLOCKCHAIN TIME-BASED CONTRACTS

In standard time-based contracts, current time evaluated during execution is dependent on the

timestamp of the block that is set by a block producer. There is no actual clock in the system other

than the clock created by miners. In general, this means a time-based contract cannot crucially

depend on the accuracy of the timestamp in order to perform non-trivial actions.

The nature of such a network with no true objective and reliable time reference makes the

creation of time-based games or systems difficult to achieve.

TIMESTAMP MANIPULATION

In EtherSphere, timestamp manipulation can occur with no economic cost if a miner simply has to

re-order the transactions to place his own bids at the end of a block to become the last highest

bidder. Additionally, a miner can guarantee he wins the game by deliberately setting a timestamp

value that is right before the round’s end time. There needs to be a mechanic in place to prevent a

miner from being able to obtain an unfair advantage by simply modifying and controlling

timestamps.

An entropy model is introduced to create a randomized extension time that prevents a block

producer from being able to accurately determine the end time of a round reset. By limiting the

validity conditions of a block that ends a round to those blocks generated within a specified

window right before the end time, it prevents a producer from pre-emptively targeting and

generating blocks with timestamps set right before the upper bound limit of the randomized

extension.

BLOCKCHAIN TIME-BASED CONTRACTS

Essentially, we want to limit the amount of time given to an attacker to a duration tiny enough

which makes it difficult or impossible to generate enough blocks to conduct a successful attack. In

order to do so, we make the end-time of a round dynamic and adjust accordingly.

ENTROPY MODEL

Having a sliding window that prevents gaps between final blocks from becoming too large helps

but isn’t sufficient to deter an attacker. While a small sliding window makes it much more difficult

for an attacker to generate a successful block in time, there isn’t actual cost incurred in an attack.

An entropy model needs to be introduced to force an attacker to compute multiple blocks to

succeed.

BLOCK GENERATED HASH

The entropy model proposed on top of the sliding window formula aims to create a randomized

extension based on a merkle root hash of the block in which a most recently incorporated bid is

accepted.

Depending on the timestamp of the current block in which the latest pending bid is awaiting

confirmation, the contract will then determine if the latest bid should be accepted based on the

current time and computed extension.

BLOCKCHAIN TIME-BASED CONTRACTS

REVERSE TIMESTAMP PREDICTION

In order to control the game, an attacker needs to be able to ensure the bids he place is the last

bid of the round. Since extension time is determined from the latest accepted bid’s block, he will

not be able to determine the randomized time his bids will create until after a valid block is

created. If the timestamp chosen by an attacker isn’t less than the final time computed with

randomized time, then the attacker would have to drop the block and re-compute another,

making it costly and computationally infeasible to manipulate the game over the long run.

DETERMINISTIC RNG FAULT TOLERANCE

Random number generation systems in Ethereum are fundamentally based on two methodologies

- generating pseudo-random numbers on the EVM itself or obtain random numbers from an

authenticated third-party feed. However, both systems have their flaws and can be exploited. Even

complex hybrid systems using third party incentivization are not fool proof and can still be subjected

to manipulation.

EtherSphere is not designed around PRNG systems, hence it avoids many PRNG vulnerabilities in

casino-based games.

TOKENS

Sphere tokens are ERC20 tokens that are issued in the following manner during crowd sale:

Each Sphere (SPR) token is entitled to fees from games and reserves stored in the Decentralized

Autonomous Organization (DAO). On top of EtherSphere 2.0, AllianceSphere and other games

released in the future will also be based on the same SPR token, and token holders will also be

entitled to those revenues.

Over time, Sphere tokens will also be given rights to vote on proposals that are necessary to

approve fund usage and mechanics updates.

TOKEN-LEVEL DIVIDEND ENTITLEMENT

Round fees are deposited into the DAO once it is finalized. This is done twice a day, and the total

fees are calculated as follows:

TOKENS

For each round, the amount of fees claimable per token depends on the token supply at the time

fees are deposited.

Computing token entitlement in a deferred manner requires keeping track of token transfers and

the corresponding account balances. However, this adds significant complexity as claims can

happen prior to a transfer, and transferred tokens may or may not still have unclaimed fees

attached to it. In practice, it is almost impossible to ensure such information can be tracked

completely due to the computational and memory restrictions of the Ethereum network.

Therefore, a simpler tracking model is used to ensure that all transferred tokens have no

unclaimed fees attached to them. Unclaimed fees are stored in the reserves, and coins are

transferred in a First-In First-Out (FIFO) basis.

RESERVE-BACKED MODEL

Reserves are meant to provide funding for EtherSphere games and is used when the reward pool

of a game drops below critical level in the future. On top of marketing and development costs,

funds received from the crowd sale will be placed in reserves of the DAO and cannot be used

unless otherwise approved through a proposal. The exact allocation is described in subsequent

sections of the whitepaper.

Each token can be burned through the DAO to retrieve the reserve value at any time. However,

reserves already used to fund games cannot be withdrawn to prevent existing games from being

affected.

For example, if there are 25,000 ethers deposited in the reserves, and an initial amount of 3,000

ethers is allocated to EtherSphere 2.0, the total burnable value is 25,000 - 3,000 = 22,000 ethers. A

TOKENS

 token holder who owns 5,000 out of 1,000,000 tokens will be entitled to 5,000/1,000,000 *

22,000 = 110 ether of total reserves.

SPHERE FRAGMENTS

Fragments (FRG) are ERC20 tokens which are distributed as part of an incentive system in the

game. These tokens are not given out during the crowd sale, and are only given out to participants

during a game round.

Sphere fragments can be exchanged for ethers at a fixed rate of 1000:1eth through the game’s

pool. This game pool is separate from the reserves and will not affect token holders. Claims should

be made at least 1 hour prior to game reset, and only up to 5% of the end round bid pool can be

claimed at any reset, ensuring that the game funds will not be significantly affected.

Alternatively, sphere fragments can be exchanged for tokens at a rate of 50:1 token through the

DAO.

DECENTRALIZED MANAGEMENT

The DAO and SPR tokens are created and designed in a way to allow for EtherSphere to be run in a

decentralized manner. The goal is to create a game that is owned by the community and is hence

run by the community. While development is still partially handled by us, we eventually wish to

take advantage of Ethereum’s potential to create a decentralized web and push EtherSphere into

fully autonomous mode.

EtherSphere’s ENS will also be controlled by the DAO and the DAO can set sub registries per the

needs of EtherSphere.

DIGITAL SELF-GOVERNING ARCHITECTURE

Multiple key actions require the approval of SPR holders. They are namely:

 Adding new authorized game contracts

 Changing funding limits for individual games

 Changing game fee rates, fragment reward ratio and fragment exchange rates

 Altering game mechanics

 Approving any kind of spending

 Updating DAO contract

Without approval, the DAO will not be able to perform the above-mentioned actions, hence giving

token holders and the community full authority to control EtherSphere’s direction.

Additionally, the following actions are not enforced in the smart contract itself but will still be

polled and followed accordingly:

 Setting future crowdfunding rules

 Making interface/platform changes

 Modifying the scope of DAO control

 Performing any other administrative tasks

PROPOSAL-BASED ARCHITECTURE DESIGN

Action approvals are done through proposals sent to the DAO. Each proposal contains a proposal

type and a generic value field that is tied to the type of approval being requested. For example if a

fee change proposal is set up, the generic value field would represent the new fee percentage.

DECENTRALIZED MANAGEMENT

Once a proposal is set up, it goes into a list of pending proposals that will be active once its

stipulated start time passes. A proposal can be approved in the following manner depending on

the number of participants:

If less than 20% of token holders vote, proposal needs at least 65% approval and not more than

20% disapproval excluding abstained votes.

If less than 50% of token holders vote, then proposal needs at least 50% approval and not more

than 35% disapproval excluding abstained votes.

If more than 50% of token holders vote, then proposals will be approved if more voters approve

than disapprove.

The purpose of changing voting conditions based on participation rate is to ensure that the

proposal system can still function even with many inactive voters. The approval ratio required

increases with lesser participants to prevent a scenario where a small group of individuals

controlling large stakes can misuse the funds. For example, if a few participants controlling 10% of

the stake attempts to pass a proposal that retrieves funds into their personal account, only 2.5%

of the community needs to disapprove of the proposal for it to be rejected.

ALLOCATION

A total of 15,421,875 tokens will be created when the crowd sale ends. 12,337,500 tokens are

raised from the crowd sale itself, 1,542,187 will be minted for bounties, and the remaining will be

locked in by developers. Token distribution is as follows:

 10% for bounties

 10% for developers

 80% for crowdsale

Upon finalizing, crowd sale proceeds will be locked in the DAO and multi-sig wallet for the

following purposes:

 5% for initial game funding

 15% as DAO reserves

 15% as Company reserves

 25% for Marketing

DECENTRALIZED MANAGEMENT

 20% for Development and Testing

 5% for Administrative

 15% for Team reward

DEVELOPMENT ROADMAP

Ultimately, the goal would be to create a new genre of game-theory based Ethereum systems that

can run autonomously on the network. While we are just in the pioneering stage, we have created

a full business timeline for the next year.

FINAL

CONCLUSION

Crowd sale status and progress can be found on the site https://ico.ethersphere.io. We will be

available for questions on the slack channel found on the site.

DISCLAIMER: This EtherSphere White Paper is provided for information purposes only. This white paper is provided
“as is” and ethersphere.io in no way guarantees the accuracy of or the conclusions arrived in this white paper.
ethersphere.io does not make and expressly disclaims all representations and warranties, express, implied, statutory
or otherwise, whatsoever, including, but not limited to: (i) warranties of merchantability, fitness for a particular
purpose, suitability, usage, title or noninfringement; (ii) that the contents of this white paper are free from error; and
(iii) that such contents will not infringe third-party rights. Except where prohibited by law, in no event shall
ethersphere.io and its affiliates be liable for damages of any kind arising out of the use, reference to, or reliance on
this white paper or any of the content contained herein, even if advised of the possibility of such damages.
ethersphere.io or its affiliates will not be liable to any person or entity for any damages, liabilities, losses, costs or
expenses of any kind, whether direct or indirect, compensatory, actual, consequential, incidental, exemplary, punitive
or special for the use of, reference to, or reliance on this white paper or any of the content contained herein,
including, without limitation, any loss of business, revenues, profits, data, use, goodwill or other intangible losses.

https://ico.ethersphere.io/

